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Abstract

This paper presents a theoretical description of plasma motion in the presence of a circularly polarized wave of arbitrary frequency
with its wave vector directed along the ambient magnetic 4eld. Both the equations of motion for a single particle and the nonlinear kinetic
equation in the drift approximation are given. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.
The distribution function is expressed with the help of initial, non-averaged variables, which is a transformation that greatly simpli4es the
calculation of the moments. The time-dependent part of the ponderomotive force is discussed, and it is shown that this component can be
on the order of the other terms in the particle motion equation. The examples of ion acceleration in the auroral zone and the e7ects of
lightning discharge are discussed to show that this theoretical study has applications to near-Earth space plasmas.
Published by Elsevier Ltd.

1. Introduction

The nonlinear e7ect of electromagnetic waves on plasmas
is a subject of interest in laboratory experiments as well as
in space physics. Wave–particle interactions described by
the ponderomotive force, which arises in such situations,
are responsible for di7erent nonlinear processes that can
be important for plasma redistribution, particle energiza-
tion, and acceleration in space plasmas (Ghildyal and Kalra,
1998; Guglielmi et al., 1996; Shukla et al., 1996). An un-
derstanding of these processes is also essential for the prob-
lems of plasma heating and con4nement in the laboratory
(D’ippolito and Myra, 1985). Numerous publications have
been devoted to the calculation of this force (see, for in-
stance, Lee (2000) and the literature cited there). In spite of
this, a number of aspects of the theory of the ponderomotive
force are, up to now, the subject of discussion. In general,
the ponderomotive force contains terms proportional to the
time derivatives, the so-called Abraham force. In a recently
published paper, Lee (2000) has stated that their calcula-
tion of the Abraham force (as well as in the paper of Lee
and Parks (1983)) di7ers from that obtained by Barash and
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Karpman (1983), and that the reason for such a di7erence is
unclear. These calculations are based on the two-@uid equa-
tion for a collisionless warm plasma and the corresponding
electrodynamic energy relations in moving media.

A kinetic description of the ponderomotive e7ect leads to
the nonlinear kinetic equations (Aamodt and Vella, 1977;
Cary and Kaufman, 1981; D’ippolito and Myra, 1985; Ye
and Kaufman, 1992; Chiu et al., 2000; Sugama, 2000).
Depending on the degree of the wave–particle coherence,
the analysis is either performed for a quasi-monochromatic
wave (Cary and Kaufman, 1981) or a quasilinear approach
is applied (Aamodt and Vella, 1977; Chiu et al., 2000). The
problem was analyzed in general (Cary and Kaufman, 1981;
Chiu et al., 2000; Sugama, 2000) as well as for a number of
speci4c applications, especially related to magnetically con-
4ned plasmas. Nonlinear kinetic equations have been found
for plasmas with low-frequency waves (conventional gy-
rokinetic equations, hereinafter GKEs) and high-frequency
waves (the kinetic equation in oscillation-centered coordi-
nates (Chiu et al., 2000; Grebogi and Littlejohn, 1984) or
GKE (Sugama, 2000)).

Chen and Tsai (1983) 4rst presented linear GKEs for
electromagnetic disturbances with arbitrary frequency. The
nonlinear problem for this case has been analyzed with
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emphasis on the ponderomotive e7ects (Cary and Kaufman,
1981; Grebogi and Littlejohn, 1984) as well as on the gen-
eral gyrokinetic plasma description and GKE-speci4c appli-
cations (D’ippolito and Myra, 1985; Sugama, 2000). The
ordering assumed in these papers, at least where the calcula-
tions are carried out to the point of application, corresponds
to the nonlinear gyrokinetic ordering (Frieman and Chen,
1982). In particular, it is assumed that the amplitudes of the
electromagnetic potentials obey the same length and time
scales as the background magnetic 4eld. Such ordering was
4rst adopted for problems involving the bulk mode in ex-
perimental nuclear fusion devices. In other applications (for
example, in the magnetosphere), the electromagnetic 4elds
(not potentials) can obey the scale of the background mag-
netic 4eld.

In space plasmas, as well as in some laboratory devices, a
circularly polarized wave propagating parallel to the exter-
nal magnetic 4eld is often a valid description of the real sit-
uation (D’ippolito and Myra, 1985; Ye and Kaufman, 1992;
Grebogi and Littlejohn, 1984). An example of such waves in
space are whistler mode waves in the vicinity of the magne-
topause observed on board the AMPTE-UKS satellite, prop-
agating parallel or almost parallel to the ambient magnetic
4eld (Sazhin et al., 1991). Another example is the observa-
tion of strong ion cyclotron waves with a wave vector almost
parallel to the magnetic 4eld (less than 7◦) observed during
Galileo’s December encounter with Io (Crary and Bagenal,
2000). The frequency of such waves can be comparable to
the particles’ gyrofrequency and the wave amplitudes can
vary over a wide spatiotemporal scale.

This paper considers the speci4c case of a circularly po-
larized wave propagating along the magnetic 4eld line with
electromagnetic 4eld characteristic scales of the order of the
background magnetic 4eld. The paper is organized as fol-
lows. Starting with the characteristics of the kinetic equa-
tion, the drift equations for the motion of a single particle
are found. Then the drift-kinetic equation is formulated and
the distribution function needed for moment calculations is
presented. Examples of the application of these results are
presented in the Conclusion. The averaging procedure and
the calculation of the distribution function are outlined in
the appendix.

2. Problem formulation

Consider a plasma immersed in an external magnetic 4eld
B̃(s; x) with the s-coordinate along this 4eld and the x-axis
along the principal normal to the line of force. The plasma
is then subjected to a circularly polarized wave

E(t; s; x)(̃ex ± ĩey)exp
(

−i
∫

!(t; s; x) dt

+ i
∫

k(t; s; x) ds
)

+ c:c:;

where the wave vector k is directed along the external mag-
netic 4eld. It is assumed below that the initial plasma dis-
tribution is independent of the y-coordinate. The magnetic
4eld and the wave amplitude spatiotemporal variations are
assumed to be weak on the scale of the wave frequency,
wavelength, particle Larmor radius, and the radius of parti-
cle drift rotation in the wave 4eld (Khazanov et al., 2000).
In the collisionless limit, the kinetic equation can be written
as (Hastie et al., 1967)

9f
9t + ṽ

9f
9̃r + F�

9f
9� + F�

9f
9� + F’

9f
9’ = 0: (1)

Here, the kinetic energy � = (m=2)(v2
s + v2

⊥), magnetic mo-
ment � = mv2

⊥=2B, and ’, the azimuthal angle about the
external magnetic 4eld direction, are introduced in velocity
space. In these variables, the characteristic equations of (1)
can be presented as
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dt
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where !B = eB=mc; � = − ∫ !̃ dt; !̃ = ! − kvs; L̂E =
(9=9t) (k=!) + 9=9s, and the magnetic 4eld line curvature
is determined by the coeKcients �1 = (1=B)(9B=9x), �2 =
(1=B)(9B=9s). Eqs. (2) are written for the right-hand polar-
ized mode, Ey = iEx. For left-hand polarization, the corre-
sponding equations can be found changing E; E∗ to E∗; E
and (!; k) to (−!;−k), respectively. In Maxwell’s equa-
tion, the wave magnetic 4eld in the Lorentz force is replaced
with the electric one,

B̃ei� =
cei�

i!

[
−ẽ x(ik + L̂E)Ey + ẽ y(ik + L̂E + �2)Ex

+ ẽ s
9Ey

9x

]
and only the 4rst-order terms over large-scale spatiotemporal
variations were taken into account. In this expression, the
magnetic 4eld perturbation due to the slow time variation of
the electric 4eld is described by the terms with the operator
L̂E, which includes the time derivative.

It can be noted from the structure of Eqs. (2) that
the second-order terms, i.e. the terms with the second
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derivatives, will lead to a third-order correction after aver-
aging these equations. The cause is that these terms appear
in Eqs. (2) as the real correction to the zeroth-order terms.
This is because in the zeroth-order approximation, the wave
4eld has no impact on the average particle energy, drift ve-
locity, and magnetic moment. The same argument is valid
for the second-order correction, which simply rede4nes the
zeroth-order terms.

3. Particle drift equations

The drift equations for a particle can be found from Eqs.
(2) by averaging over the Larmor rotation and oscillation in
the wave electromagnetic 4eld in the usual way (Morozov
and Solov’ev, 1966) as it is presented in the appendix. The
left-hand side terms in these equations are periodic func-
tions with respect to the arguments ’ and �. In fact, they
are periodic with respect to the arguments ’ and ’ + �,
where the main term in ’ is proportional to the particle gy-
rofrequency !B. The exception is the term proportional to
9E=9x in the last equation of (2). This term a7ects only
the drift velocity along the y-axis, and this velocity af-
ter averaging is still proportional to the product of periods
1=!B; 1=(!B + L!). As a result, even when the wave period is
large (low-frequency waves), this term is still proportional to
the squared gyroperiod. The drift equations can be obtained
by averaging (2) over these periods with second-order accu-
racy with respect to the small parameters, 1=!B; 1=(!B +!̃).
These second-order terms should be taken into considera-
tion not only for high-frequency waves but also if the mass
dependence of the wave–particle interaction in the limit of
low-frequency waves (|!̃|�!B) is the subject of interest.
The third-order terms over these small parameters can be
neglected if the restrictions∣∣∣∣kv⊥

�

∣∣∣∣ ;
∣∣∣∣k2v2

⊥
�!

∣∣∣∣�1 (3)

are satis4ed. Here �=!B + !̃. The resulting drift equations
for the particle are

vx = 0; vy =
2�1

m!B

(
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)
− e2
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�!B!2

9
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− 1
!
9
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;

where |E0|2 = 4E2. Eqs. (4) describe the particle motion in
the drift approximation for a nonstationary, inhomogeneous
plasma in the range of velocities restricted by inequalities

(3). In the framework of these restrictions the particle ve-
locity can be larger than the wave phase velocity.

Because the magnetic 4eld and wave amplitude change
only in the x; s-plane, the drift velocity is directed along the
y-axis, listed as vy in Eqs. (4). The 4rst term is the usual
drift due to the magnetic 4eld curvature and its gradient.
A particle subjected to a circularly polarized wave with a
wave vector along the magnetic 4eld line rotates under the
in@uence of this magnetic 4eld and the electric 4eld of the
wave. Averaged over these rotations, the motion results in
additional drift due to the wave electric 4eld inhomogeneity
and leads to the second term in the drift velocity vy.

It can be noted that the result for the magnetic moment
� in Eqs. (4) immediately follows from the character of the
particle motion in the circularly polarized wave. By neglect-
ing the slow drift along the y-axis, the guiding center rotates
with a velocity that can be written as (Khazanov et al., 2000)

v± ≡ vx ± ivy = ±i
e
m

!̃
!�

E exp(±i�):

The particle is also involved in Larmor rotation. The total
average energy of the perpendicular motion is the sum of
the energy of the Larmor rotation and the guiding center
rotation mv+v−=2. The expression for the magnetic moment
� is the same as this last energy of perpendicular rotation in
the wave 4eld divided by the external magnetic 4eld.

The second term in the energy equation, in the limit of a
stationary medium and neglecting the velocity dependence
in �, turns out to be the magnetization energy per particle
as found by Similon et al. (1986). This term also can be
found from a simple consideration for the stationary case.
The guiding center trajectory is wound along a cylinder with
a radius of r± = ∓iv±=!̃ (Khazanov et al., 2000). The rate
of change of the magnetic 4eld @ux through the surface re-
stricted by such a circle divided by the guiding center ro-
tation period (2�=!) leads to the same magnetization en-
ergy. The �-dependent term in the equation for the energy
is the same as the corresponding term in the ponderomotive
Hamiltonian found by Grebogi and Littlejohn (1984).

The force component acting on the particle along the ex-
ternal magnetic 4eld, m dvs=dt, which frequently appears in
di7erent applications for space plasma, can be calculated
from Eqs. (4). The part of this force that depends on the
inhomogeneity is

F (s) = −�
9B
9s − e2

2m

×
(

1
!
9
9s

!B

�2 |E0|2 + B
9
9s

!̃2

�2B!2 |E0|2
)

:

The �-dependent term in this expression is the usual mirror-
ing force. The ponderomotive term is the same as found by
Aamodt and Vella (1977) in the quasilinear approximation,
if ! is constant and the terms kvs in !̃; � are omitted. That
is,

F (s) = − e2

2m
B

!(!B + !)
9
9s

|E0|2
B

:
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The part of the ponderomotive force in m dvs=dt that arises
due to nonstationarity is

F (t) = −4e2

m

(
E

!�
9
9t

kE
!

− kE
!�

9
9t

!̃E
!�

− v2
⊥

8�2vs

9
9t

k2|E0|2
!2

)
: (5)

Note that dvs=dt for this case describes the total particle ac-
celeration along the magnetic 4eld line because the external
magnetic 4eld and the unit vectors are time independent in
our consideration. The last term in this expression can be es-
sential for particles with a velocity comparable to the wave
phase velocity. The 4rst and the second terms of this force,
for a constant wave frequency, ! and omitting the terms kvs

in !̃; �, lead to the force

F (t) = −e2

m

( |E0|2
!2(! + !B)

9k
9t

+
k!B

2!2(! + !B)2

9
9t |E0|2

)
: (5a)

For this part of the ponderomotive force, the same result
was found by Barash and Karpman (1983) using a macro-
scopic approach based on the energy relations in a moving
media. To compare the results between their approach and
the one presented here, the external magnetic 4eld in their
calculations should be taken as time independent. The part
of the ponderomotive force, F (t), acting along the external
magnetic 4eld can be calculated directly starting with (2)
(i.e., the non-averaged equations) for the acceleration term
dvs=dt. The result for the time-dependent part is still the
same as that presented by the expressions (5) and (5a). Note
that this di7ers from the results of Lee and Parks (1983)
and Lee (2000), who based their results on the equations of
motion. Their result follows from the ponderomotive Hamil-
tonian calculated by Grebogi and Littlejohn (1984). The
time-dependent part of the acceleration found as a deriva-
tive of the guiding center drift velocity is the same as that
calculated from the results of Lee and Parks (1983) and Lee
(2000).

Results for the interaction of an AlfvNen wave (Khazanov
et al., 2000) with a particle undergoing acceleration along
the magnetic 4eld due to some external potential non-electric
force follows from Eqs. (4) in the limit of the stationary
and homogeneous system when only the particle velocity vs

changes due to this force.

4. Kinetic equation

The averaged characteristic equations in (4) permit one
to write the kinetic equation in the drift approximation.
Note, that we started with the characteristic Eqs. (2), with
the right-hand side oscillating due to the dependence on
the angle variables, ’ and �. The corresponding system of

equations is system (A.1) in the appendix. The averaged
Eqs. (4) or (A.3) are independent of these oscillations. We
did not include in (4) the averaged equation for the angle
variable ’ but, as it can be seen from (A.3), the right-hand
side of this equation is also angle independent. The kinetic
equation (1), with the use of the chain rule, can be rewritten
in the new averaged variables �k ; �m (A.6). In our case, �k

are the averaged variables x; y; z; �; � with the time deriva-
tives determined by Eqs. (4), and �m are two new angle vari-
ables instead of � and ’. Because time derivatives of the
new variables given in Eqs. (4) and (A.3) are taken inde-
pendent of the angle variables, the characteristic equations
of the transformed kinetic equation (A.6) are also indepen-
dent of them. As discussed in the appendix, in this case the
distribution function is independent on the angle variables
� and ’. This leads to a kinetic equation for the distribution
function f0 in the new variables,

9f0

9t + vs
9f0

9s + vy
9f0

9y +
d�
dt
9f0

9� = 0: (6)

Here vy; vs, and d�=dt are determined by Eqs. (4) and con-
servation of the magnetic moment is taken into account.

To calculate macroscopic quantities such as plasma den-
sity, current, and heat, the distribution function f0 should
be transformed to the old variables (Bernstein and Catto,
1985). The dependence between these two sets of variables
is presented by expression (A.2). So, the averaged variables
can be expressed as function of the old, non-averaged vari-
ables (A.7). Then the distribution function can be expanded
in a series and, with the help of (A.8) and (A.7), we have

f = f0 +
1
!B

v⊥

(
sin ’

9f0

9x − cos’
9f0

9y

)

+
e2

m!�

{
− 9f0

9�
v⊥ sin ’

4!B

9
9x |E0|2

− 9f0

9�
1
!

[
!̃
B

v⊥ sin ’
4!B

9
9x + �2

�k
2m

sin 2’
!B − !̃

]
|E0|2

+
�
2

|E0|2
[
!B
�

92

9�2 +
!̃
B!

(
!̃
�

− �2vs sin 2’
!B − !̃

)
92

9�2

+
(

2!̃
�

− �2vs sin 2’
!B − !̃

)
92

9�9�

]
f0

}
; (7)

where vs and v⊥ are determined by the expressions � =
(m=2)(v2

s + v2
⊥); � = mv2

⊥=2B.
Because the velocity components depend only on the an-

gle ’, (vx = v⊥ sin ’; vy = v⊥ cos’) and we are interested
in the slowly changing part of the macroscopic quantities
(calculated with the help of these velocity components), the
terms in the transformed distribution function dependent on
the wave phase � can be omitted.

The elementary volume in the 4ve-dimensional space
x; y; z; �; � can be de4ned as B dx dy dz d� d�=m×
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2m(�−�B). This volume is invariant under the transfor-

mation presented by (A.2) and (A.3) assuming that the con-
ditions in Eq. (3) are satis4ed. Then Liouville’s theorem,
with an accuracy of second-order in the small parameters
1=!B; 1=(!B + !̃) is satis4ed and the moments of the distri-
bution function given in Eq. (7) can be calculated.

5. Conclusion

Ponderomotive forces are essential for the understand-
ing of a wide variety of phenomena in the solar wind and
in planetary magnetospheres. Examples of their importance
include the cold plasma redistribution toward the Earth’s
magnetospheric equator and the energization of ionospheric
ions. Circularly polarized waves (ion cyclotron waves and
whistlers) are widely prevalent throughout space. The wave
vector of these waves is often directed along the external
magnetic 4eld (or close to it). Under these conditions, a
kinetic description of the ponderomotive wave-particle in-
teraction is signi4cantly simpli4ed and can be used for a
number of applications.

The role of additional velocity-dependent terms in the
time-dependent part of the ponderomotive force can be il-
lustrated by the problem of upward acceleration of ions in
the auroral region. As pointed out by Shukla et al. (1996),
parallel ion acceleration is strongly dependent on the spa-
tiotemporal variation of the wave electric 4eld energy den-
sity. Assuming for simplicity a magnetic moment equal to
zero, the expression for an ion’s energy change in the 4eld
of ion cyclotron wave will have a time-dependent term from
(4), and that can be presented as

d�
dt

=
4e2

m
E

!Bi − !̃

(
9
9t

!̃E
(!Bi − !̃)!

+
1
!
9
9t

kvs

!
E
)

:

For an altitude of ∼ 2000 km, the ion velocity is in the
range of about 5 km=s, the wave phase velocity is around
6000 km=s, and the wave frequency ∼ 2 Hz (Boehm et al.,
2000). Therefore, the additional second term for hydrogen
ions is at least of the same order of magnitude as the 4rst
and can essentially change the rate of acceleration. Note the
dependence of the last term on the velocity and wave vector
orientation.

Another problem for which the same additional term can
be important is related to the nonlinear ionospheric e7ects
produced by lightning discharge. For example, Yukhimuk
and Roussel-Dupre (1997) proposed the parametric decay
of a whistler mode wave into a lower hybrid wave and an
ultra-low-frequency electromagnetic wave as an explanation
of an observed electrostatic wave and magnetic pulse. A
complete description of such phenomena includes the energy
density evolution of the whistler wave. The whistler wave
ampli4cation is also of interest for some other problems re-
lated to lightning produced whistlers. According to obser-
vations (Kelley et al., 1985) the whistler burst duration is

10–20 ms. They describe a case where the whistler electric
4eld changes 2.4 times over the range from 300 to 650 km
away from the lightning discharge. The whistler, electron
gyro- and plasma-frequencies are ! = 3 × 104 s−1; !Be =
2 × 105 s−1; !pe = 4 × 107 s−1. Assuming the magnetic
moment is equal to zero, it follows from expressions (4)
that the main term in the parallel ponderomotive force is the
term with the time derivative. The whistler phase velocity
is about 550 km=s and both components of this term can be
of the same order.

Results obtained for a single particle (Eqs. (4)) can be
useful for a particle-in-cell simulation. The kinetic equation
(6) along with the distribution in Eq. (7) permit the anal-
ysis of the interaction of a multicomponent plasma with a
circularly polarized wave, taking into account the system
nonstationarity and inhomogeneity, and allow for the cal-
culation of the macroscopic plasma parameters. The results
are found under the assumption that the wave 4eld varies
on the same scale as the background magnetic 4eld.
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Appendix.

Because the method of averaging for the approximate so-
lution of di7erential equations is well known and widely
used in plasma physics, we will only brie@y outline the ap-
proach and present the results for the second-order approxi-
mation. Below, we are following the analysis of the system
of 4rst-order di7erential equations with multiple periodic
coeKcients presented by Morozov and Solov’ev (1966).

The characteristic equations (2) of the kinetic equation
(1) can be presented as

dxk

dt
= fk(xi; t; #m);

d#n

dt
=

1
�
!n(xi; t; ) + An(xi; t; #m) (A.1)

with functions fk; An, which are periodic with respect to the
arguments #m, and � is a small parameter. Eqs. (2) can be
presented in this form introducing the angle � = − ∫ !̃ dt.
We seek a substitution of variables like this,

xk = �k +
∑
r=1

�rgr
k(�i; t; �m);

#n = �n +
∑
s=1

�sqs
n(�i; t; �m); (A.2)



950 G.V. Khazanov et al. / Planetary and Space Science 52 (2004) 945–951

such that the new variables �k ; �m satisfy equations which
do not contain the phase #m:
d�k

dt
= ’ok(�i; t) +

∑
r=1

�r’r
k(�i; t);

d�n

dt
=

1
�
!n(�i; t) +

∑
s=0

�s�s
n(�i; t): (A.3)

First, expressions (A.2) are substituted into (A.1), and then
the time derivatives in terms like (9gr

k)=(9�i) (d�i)=(dt) are
replaced by Eqs. (A.3). The right-hand side of the Eqs. (A.1)
can be expanded in a Taylor series over the small parameter
�. Equating terms of the same order in �, we can 4nd equa-
tions which relate the functions fk(�i; t; �m); An(�i; t; �m)
and the new functions ’k; �n; gk and qn. For example, the
zeroth-order equalities are

’0
k(�i; t) +

dg1
k

d�m
!m = fk; �0

n +
dq1

n

d�m
!m = An +

9!n

9�i
g1
i :

The periodic functions fk(�i; t; �m); An(�i; t; �m) can be
written as a sum of harmonics Co;o(�i; t) +

∑
v;� Cv;�(�i; t)

exp i(v�1 + ��2 + · · ·). Requiring that gk and qn be pe-
riodic functions with no constant terms, the equation of
given order in � can be split in two: an angle-dependent
part and an angle-independent part. The latter part
is found by integration over the period and yields
’0

k(�i; t) = Lf k; �0
n = LAn. Subtracting the result from

the initial equation and integrating over �m yields

g1
k = fk=i!n ≡

︷︸︸︷
fk ; q1

n =
︷︸︸︷
An +(9!n=9�k)

︷︸︸︷
g1
k . More

details of these calculations can be found in Morozov
and Solov’ev (1966), presented there with an accuracy to
the 4rst order in �. The solution of the obtained system of
equations for the unknown variables �k can be presented as

d�k

dt
= fk +

r=2∑
r=1

9fk

9�n
gr
n +

9fk

9�m
qr
m

+
1
2

(
92fk

9�n9�m
g1
ng1

m+2
92fk

9�n9�m
g1
nq1

m+
92fk

9�n9�m
q1
nq1

m

)
;

(A.4)

where the bar notes that the oscillating terms are removed
from these expressions and

g1
k =

︷︸︸︷
fk ; q1

n =
︷︸︸︷
An +

9!n

9�k

︷︸︸︷
g1
k ; �0

n = LAn;

g2
k = −

︷︸︸︷
9g1

k

9t − Lf i

︷︸︸︷
9g1

k

9�i
−�0

n

!n
g1
k +

︷ ︸︸ ︷
9fk

9�i
g1
i +

︷ ︸︸ ︷
9fk

9�n
q1
n;

q2
n = −

︷︸︸︷
9q1

n

9t − Lf i

︷︸︸︷
9q1

n

9�i
−�0

m

!m
q1
n +

9!n

9�i

︷︸︸︷
g2
i

+

︷ ︸︸ ︷
9An

9�k
g1
k +

︷ ︸︸ ︷
9An

9�m
q1
m : (A.5)

The operation
︷︸︸︷
z applied to trigonometric functions in a

multiple periodic system means︷ ︸︸ ︷
exp i(v�1 + ��2 + · · ·) =

exp i(v�1 + ��2 + · · ·)
i(v!1 + �!2 + · · ·) :

It is assumed that there is no resonance in the system, i.e.,
v!1 + �!2 + · · · 	= 0.

Kinetic equation (1), with the use of the chain rule, can
now be rewritten in the new variables �k ; �m

9f
9t +

d�k

dt
9f
9�k

+
d�m

dt
9f
9�m

= 0 (A.6)

with d�k=dt; d�m=dt from the Eq. (A.3). As a result, the co-
eKcients in the transformed kinetic equation are indepen-
dent on the angle variables �m. It can be proved that the
distribution function f satisfying this equation is also angle
independent (Qin et al., 1998). Hence Eq. (A.6) is angle in-
dependent and reduces to the 4rst two terms, with the coeK-
cients d�k=dt calculated with the help of expressions (A.4).

The solution of Eq. (A.6) can be transformed (Bernstein
and Catto, 1985) to the old variables xk ; #m. With accuracy
to the second-order in �, the inverse transformation to (A.2)
is

�k = xk − �g1k + �2
(

−g2k + g1l
9g1k

9xl
+ q1m

9g1k

9#m

)
; (A.7)

where gk and qn are now functions of old variables xk ; #m,
and t. Then, with the same accuracy, we have

f(�k ; t) = f(xk ; t) +
9f
9xk

(�k − xk)

+�2 92f
9xk9xl

g1kg1l

2
(A.8)

with �k − xk from expression (A.7). It is not necessary to
distinguish between the initial and the transformed variables
in the right-hand side of this expression. This di7erence is
explicitly taken into account in the transformation of the
distribution function, with second-order accuracy. It should
be noted that only if the terms that are linear with respect
to the wave energy are taken into account, then Eqs. (A.4)
and (A.8) are signi4cantly simpli4ed.
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